Exercise 1.53

Given two vectors $\vec{A} = -2.00\hat{i} + 3.00\hat{j} + 4.00\hat{k}$ and $\vec{B} = 3.00\hat{i} + 1.00\hat{j} - 3.00\hat{k}$, do the following. (a) Find the magnitude of each vector. (b) Write an expression for the vector difference $\vec{A} - \vec{B}$ using unit vectors. (c) Find the magnitude of the vector difference $\vec{A} - \vec{B}$. Is this the same as the magnitude of $\vec{B} - \vec{A}$? Explain.

Solution

The magnitudes of the given vectors are

$$|\mathbf{A}| = \sqrt{(-2.00)^2 + (3.00)^2 + (4.00)^2} = \sqrt{29} \approx 5.39$$
$$|\mathbf{B}| = \sqrt{(3.00)^2 + (1.00)^2 + (-3.00)^2} = \sqrt{19} \approx 4.36,$$

the vector difference $\mathbf{A} - \mathbf{B}$ is

$$\mathbf{A} - \mathbf{B} = (-2.00\hat{i} + 3.00\hat{j} + 4.00\hat{k}) - (3.00\hat{i} + 1.00\hat{j} - 3.00\hat{k})$$

= $(-2.00 - 3.00)\hat{i} + (3.00 - 1.00)\hat{j} + [4.00 - (-3.00)]\hat{k}$
= $-5.00\hat{i} + 2.00\hat{j} + 7.00\hat{k}$,

and its magnitude is

$$|\mathbf{A} - \mathbf{B}| = \sqrt{(-5.00)^2 + (2.00)^2 + (7.00)^2}$$

= $\sqrt{78}$
 $\approx 8.83.$

On the other hand, the vector difference ${\bf B}-{\bf A}$ is

$$\mathbf{B} - \mathbf{A} = (3.00\hat{i} + 1.00\hat{j} - 3.00\hat{k}) - (-2.00\hat{i} + 3.00\hat{j} + 4.00\hat{k})$$

= $[3.00 - (-2.00)]\hat{i} + (1.00 - 3.00)\hat{j} + (-3.00 - 4.00)\hat{k}$
= $5.00\hat{i} - 2.00\hat{j} - 7.00\hat{k}$,

and its magnitude is

$$|\mathbf{B} - \mathbf{A}| = \sqrt{(5.00)^2 + (-2.00)^2 + (-7.00)^2}$$
$$= \sqrt{78}$$
$$\approx 8.83.$$

The magnitudes of $\mathbf{B} - \mathbf{A}$ and $\mathbf{A} - \mathbf{B}$ are the same.