Exercise 1.53

Given two vectors $\overrightarrow{\boldsymbol{A}}=-2.00 \hat{\boldsymbol{i}}+3.00 \hat{\boldsymbol{j}}+4.00 \hat{\boldsymbol{k}}$ and $\overrightarrow{\boldsymbol{B}}=3.00 \hat{\boldsymbol{i}}+1.00 \hat{\boldsymbol{j}}-3.00 \hat{\boldsymbol{k}}$, do the following. (a) Find the magnitude of each vector. (b) Write an expression for the vector difference $\overrightarrow{\boldsymbol{A}}-\overrightarrow{\boldsymbol{B}}$ using unit vectors. (c) Find the magnitude of the vector difference $\overrightarrow{\boldsymbol{A}}-\overrightarrow{\boldsymbol{B}}$. Is this the same as the magnitude of $\overrightarrow{\boldsymbol{B}}-\overrightarrow{\boldsymbol{A}}$? Explain.

Solution

The magnitudes of the given vectors are

$$
\begin{aligned}
& |\mathbf{A}|=\sqrt{(-2.00)^{2}+(3.00)^{2}+(4.00)^{2}}=\sqrt{29} \approx 5.39 \\
& |\mathbf{B}|=\sqrt{(3.00)^{2}+(1.00)^{2}+(-3.00)^{2}}=\sqrt{19} \approx 4.36,
\end{aligned}
$$

the vector difference $\mathbf{A}-\mathbf{B}$ is

$$
\begin{aligned}
\mathbf{A}-\mathbf{B} & =(-2.00 \hat{\boldsymbol{i}}+3.00 \hat{\boldsymbol{j}}+4.00 \hat{\boldsymbol{k}})-(3.00 \hat{\boldsymbol{i}}+1.00 \hat{\boldsymbol{j}}-3.00 \hat{\boldsymbol{k}}) \\
& =(-2.00-3.00) \hat{\boldsymbol{i}}+(3.00-1.00) \hat{\boldsymbol{j}}+[4.00-(-3.00)] \hat{\boldsymbol{k}} \\
& =-5.00 \hat{\boldsymbol{i}}+2.00 \hat{\boldsymbol{j}}+7.00 \hat{\boldsymbol{k}},
\end{aligned}
$$

and its magnitude is

$$
\begin{aligned}
|\mathbf{A}-\mathbf{B}| & =\sqrt{(-5.00)^{2}+(2.00)^{2}+(7.00)^{2}} \\
& =\sqrt{78} \\
& \approx 8.83 .
\end{aligned}
$$

On the other hand, the vector difference $\mathbf{B}-\mathbf{A}$ is

$$
\begin{aligned}
\mathbf{B}-\mathbf{A} & =(3.00 \hat{\boldsymbol{i}}+1.00 \hat{\boldsymbol{j}}-3.00 \hat{\boldsymbol{k}})-(-2.00 \hat{\boldsymbol{i}}+3.00 \hat{\boldsymbol{j}}+4.00 \hat{\boldsymbol{k}}) \\
& =[3.00-(-2.00)] \hat{\boldsymbol{i}}+(1.00-3.00) \hat{\boldsymbol{j}}+(-3.00-4.00) \hat{\boldsymbol{k}} \\
& =5.00 \hat{\boldsymbol{i}}-2.00 \hat{\boldsymbol{j}}-7.00 \hat{\boldsymbol{k}},
\end{aligned}
$$

and its magnitude is

$$
\begin{aligned}
|\mathbf{B}-\mathbf{A}| & =\sqrt{(5.00)^{2}+(-2.00)^{2}+(-7.00)^{2}} \\
& =\sqrt{78} \\
& \approx 8.83 .
\end{aligned}
$$

The magnitudes of $\mathbf{B}-\mathbf{A}$ and $\mathbf{A}-\mathbf{B}$ are the same.

